Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(1)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36671565

RESUMO

Alpha-synuclein (aSyn) plays a central role in Parkinson's disease (PD) and has been extensively studied in the brain. This protein is part of the synuclein family, which is also composed of beta-synuclein (bSyn) and gamma-synuclein (gSyn). In addition to its neurotoxic role, synucleins have important functions in the nervous system, modulating synaptic transmission. Synucleins are expressed in the retina, but they have been poorly characterized. However, there is evidence that they are important for visual function and that they can play a role in retinal degeneration. This study aimed to profile synucleins in the retina of naturally aged mice and to correlate their patterns with specific retinal cells. With aging, we observed a decrease in the thickness of specific retinal layers, accompanied by an increase in glial reactivity. Moreover, the aSyn levels decreased, whereas bSyn increased with aging. The colocalization of both proteins was decreased in the inner plexiform layer (IPL) of the aged retina. gSyn presented an age-related decrease at the inner nuclear layer but was not significantly changed in the ganglion cell layer. The synaptic marker synaptophysin was shown to be preferentially colocalized with aSyn in the IPL with aging. At the same time, aSyn was found to exist at the presynaptic endings of bipolar cells and was affected by aging. Overall, this study suggests that physiological aging can be responsible for changes in the retinal tissue, implicating functional alterations that could affect synuclein family function.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , alfa-Sinucleína/metabolismo , Retina/metabolismo , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Transmissão Sináptica
2.
ACS Appl Bio Mater ; 2(11): 4790-4800, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021479

RESUMO

Polymeric scaffolds incorporating plant-derived compounds, produced by electrospinning, have attracted attention in the field of skin tissue engineering. This study evaluates the sustained antioxidant activity of polycaprolactone (PCL)/gelatin nanofibers prepared by electrospinning and incorporating loaded liposomes of epigallocatechin-3-gallate (EGCG), a strong antibacterial and antioxidant molecule found in green tea, that significantly accelerates the wound-healing process. The morphology and the structural properties of the membranes were characterized by scanning electron microscopy (SEM) and FTIR spectroscopy. Results revealed that the EGCG released from PCL+gelatin nanofibers scavenges the toxic ROS species generated by exposure to either H2O2 or UV radiation and slows down the oxidation events associated with damage. This study provides the basis for development of promising nanofiber formulations containing EGCG that might enhance repair/regeneration of skin tissue.

3.
Acta Biomater ; 17: 89-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25600399

RESUMO

Gene transfer efficiency and expression stability are key factors to a successful gene therapy approach. In the present work we have developed a combined system for gene transfer that integrates well established non-viral polymeric vectors based on chitosan particles with the properties of phiC31-integrase that promotes a relatively non-immunogenic, site-specific integration, with sustained gene expression. Simultaneously, to overcome one of the major limitations in adeno-associated virus mediated gene transfer--the delivery of large genes--we have tested the capacity of our non-viral vectors to incorporate a large (8 Kb) transgene. Polyplexes were extensively characterized for their size, surface charge, morphology, pDNA complexation, transfection efficiency and transgene expression in vitro using HEK293 cells. Co-transfection with integrase was done by complexation in a single polyplex preparation or the use of two separate polyplex preparations. Transgene expression, GFP and CEP290 (1Kb and 8 Kb, respectively), was evaluated by fluorescence microscopy, flow cytometry and Western blot analysis. DNA complexation efficiency, particle size and morphology were consistent with gene delivery for all formulations. In contrast, transfection efficiency and transgene expression varied with polymer and polyplex size. Following delivery by chitosan polyplexes, high levels of GFP expression were still visible 16 weeks post-transfection and over-expression of the large transgene was detected at least 6 weeks post-transfection. Polyplexes incorporating phiC1 integrase demonstrate prolonged gene expression of both small (GFP, 1 Kb) and large genes (CEP290, 8Kb). This approach, using a combined strategy of polymers and integrase may overcome the size limitation found in commonly used adeno-associated virus mediated gene transfer techniques, while maintaining a high safety profile and prolonged, sustained gene expression, thus constituting an alternative for gene delivery.


Assuntos
Quitosana/química , Técnicas de Transferência de Genes , Integrases/química , Plasmídeos/metabolismo , Bacteriófagos/enzimologia , Regulação da Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Polímeros/química , Regiões Promotoras Genéticas , Transfecção , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...